Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Pathogens ; 12(5)2023 May 03.
Article in English | MEDLINE | ID: covidwho-20234785

ABSTRACT

Protein post-translational modifications (PTMs) are an important battleground in the evolutionary arms races that are waged between the host innate immune system and viruses. One such PTM, ADP-ribosylation, has recently emerged as an important mediator of host antiviral immunity. Important for the host-virus conflict over this PTM is the addition of ADP-ribose by PARP proteins and removal of ADP-ribose by macrodomain-containing proteins. Interestingly, several host proteins, known as macroPARPs, contain macrodomains as well as a PARP domain, and these proteins are both important for the host antiviral immune response and evolving under very strong positive (diversifying) evolutionary selection. In addition, several viruses, including alphaviruses and coronaviruses, encode one or more macrodomains. Despite the presence of the conserved macrodomain fold, the enzymatic activity of many of these proteins has not been characterized. Here, we perform evolutionary and functional analyses to characterize the activity of macroPARP and viral macrodomains. We trace the evolutionary history of macroPARPs in metazoans and show that PARP9 and PARP14 contain a single active macrodomain, whereas PARP15 contains none. Interestingly, we also reveal several independent losses of macrodomain enzymatic activity within mammalian PARP14, including in the bat, ungulate, and carnivore lineages. Similar to macroPARPs, coronaviruses contain up to three macrodomains, with only the first displaying catalytic activity. Intriguingly, we also reveal the recurrent loss of macrodomain activity within the alphavirus group of viruses, including enzymatic loss in insect-specific alphaviruses as well as independent enzymatic losses in two human-infecting viruses. Together, our evolutionary and functional data reveal an unexpected turnover in macrodomain activity in both host antiviral proteins and viral proteins.

2.
Virology ; 583: 29-35, 2023 06.
Article in English | MEDLINE | ID: covidwho-2306157

ABSTRACT

COVID-19 may cause the release of systemic inflammatory cytokines resulting in severe inflammation. PARP-1 has been identified as a nuclear enzyme that is activated by DNA strand breaks. It has been suggested that PARP-1 has a role in the cytokine storm shown as a cause of mortality in COVID-19, and its inhibition may adversely affect the replication of SARS -CoV-2. We aimed to investigate the relationship between PARP-1 gene polymorphisms and the clinical severity of COVID-19. rs8679 TT genotype was found to increase with the COVID-19 disease severity. The 3'UTR polymorphism rs8679 may cause PARP-1 activity as a result of viral replication increase by changing the binding site of antiviral or anti-inflammatory miRNAs. PARP-1 may affect the severity of COVID-19 by cytokine release and maybe a possible treatment target.


Subject(s)
COVID-19 , MicroRNAs , Poly (ADP-Ribose) Polymerase-1 , Humans , 3' Untranslated Regions , Antiviral Agents/therapeutic use , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , DNA Repair , MicroRNAs/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
3.
Pathogens ; 12(3)2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2292284

ABSTRACT

Cells have developed different strategies to cope with viral infections. Key to initiating a defense response against viruses is the ability to distinguish foreign molecules from their own. One central mechanism is the perception of foreign nucleic acids by host proteins which, in turn, initiate an efficient immune response. Nucleic acid sensing pattern recognition receptors have evolved, each targeting specific features to discriminate viral from host RNA. These are complemented by several RNA-binding proteins that assist in sensing of foreign RNAs. There is increasing evidence that the interferon-inducible ADP-ribosyltransferases (ARTs; PARP9-PARP15) contribute to immune defense and attenuation of viruses. However, their activation, subsequent targets, and precise mechanisms of interference with viruses and their propagation are still largely unknown. Best known for its antiviral activities and its role as RNA sensor is PARP13. In addition, PARP9 has been recently described as sensor for viral RNA. Here we will discuss recent findings suggesting that some PARPs function in antiviral innate immunity. We expand on these findings and integrate this information into a concept that outlines how the different PARPs might function as sensors of foreign RNA. We speculate about possible consequences of RNA binding with regard to the catalytic activities of PARPs, substrate specificity and signaling, which together result in antiviral activities.

4.
Heliyon ; 9(3): e14029, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2288593

ABSTRACT

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

5.
Future Med Chem ; 15(3): 225-227, 2023 02.
Article in English | MEDLINE | ID: covidwho-2279129
6.
Biomolecules ; 13(2)2023 02 16.
Article in English | MEDLINE | ID: covidwho-2244396

ABSTRACT

The COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infection and the associated complications, bringing some solace to this ongoing turmoil. We are providing some insights regarding an ideal agent which could prevent SARS-CoV-2 multiplication. If we could identify an agent which is an activator of metabolism and is also bioactive, we could prevent corona activation (AMBICA). Some naturally occurring lipid molecules best fit this identity as an agent which has the capacity to replenish our host cells, specifically immune cells, with ATP. It could also act as a source for providing a substrate for host cell PARP family members for MARylation and PARylation processes, leading to manipulation of the viral macro domain function, resulting in curbing the virulence and propagation of SARS-CoV-2. Identification of the right lipid molecule or combination of lipid molecules will fulfill the criteria. This perspective has focused on a unique angle of host-pathogen interaction and will open up a new dimension in treating COVID-19 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Poly(ADP-ribose) Polymerase Inhibitors , Activation, Metabolic , Pandemics , Lipids
7.
Rare Tumors ; 15: 20363613231152333, 2023.
Article in English | MEDLINE | ID: covidwho-2232863

ABSTRACT

Myxopapillary ependymoma (MPE) is a primary tumor of the central nervous system (CNS), characteristically an indolent malignancy involving the spinal conus medullaris, Filum terminale or cauda equina. We present a rare case of MPE, recurrent in the pelvic soft tissue with eventual pleural and intra-pulmonary metastasis. Refractory to repeated gross resection, adjuvant radiotherapy, platinum-based chemotherapy and temozolomide exploitation of mutant somatic BRCA1 status with the addition of a poly (ADP-ribose); polymerase inhibitor (PARPi) in a novel combination regimen with olaparib-temozolomide (OT) has achieved stable radiological disease after 10 cycles.

8.
Viruses ; 15(1)2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2216955

ABSTRACT

ADP-ribosylation (ADPRylation) is a versatile posttranslational modification in eukaryotic cells which is involved in the regulation of a wide range of key biological processes, including DNA repair, cell signalling, programmed cell death, growth and development and responses to biotic and abiotic stresses. Members of the poly(ADP-ribosyl) polymerase (PARP) family play a central role in the process of ADPRylation. Protein targets can be modified by adding either a single ADP-ribose moiety (mono(ADP-ribosyl)ation; MARylation), which is catalysed by mono(ADP-ribosyl) transferases (MARTs or PARP "monoenzymes"), or targets may be decorated with chains of multiple ADP-ribose moieties (PARylation), via the activities of PARP "polyenzymes". Studies have revealed crosstalk between PARylation (and to a lesser extent, MARylation) processes in plants and plant-virus interactions, suggesting that these tight links may represent a novel factor regulating plant antiviral immunity. From this perspective, we go through the literature linking PARylation-associated processes with other plant regulation pathways controlling virus resistance. Once unraveled, these links may serve as the basis of innovative strategies to improve crop resistance to viruses under challenging environmental conditions which could mitigate yield losses.


Subject(s)
Poly Adenosine Diphosphate Ribose , Poly(ADP-ribose) Polymerases , Poly(ADP-ribose) Polymerases/genetics , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Antiviral Agents/pharmacology
9.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2123706

ABSTRACT

The epithelial barrier's primary role is to protect against entry of foreign and pathogenic elements. Both COVID-19 and Inflammatory Bowel Disease (IBD) show commonalities in symptoms and treatment with sensitization of the epithelial barrier inviting an immune response. In this study we use a multi-omics strategy to identify a common signature of immune disease that may be able to predict for more severe patient outcomes. Global proteomic approaches were applied to transcriptome and proteome. Further semi- and relative- quantitative targeted mass spectrometry methods were developed to substantiate the proteomic and metabolomics changes in nasal swabs from healthy, COVID-19 (24 h and 3 weeks post infection); serums from Crohn's disease patients (scored for epithelial leak), terminal ileum tissue biopsies (patient matched inflamed and non-inflamed regions, and controls). We found that the tryptophan/kynurenine metabolism pathway is a 'hub' regulator of canonical and non-canonical transcription, macrophage release of cytokines and significant changes in the immune and metabolic status with increasing severity and disease course. Significantly modified pathways include stress response regulator EIF2 signaling (p = 1 × 10-3); energy metabolism, KYNU (p = 4 × 10-4), WARS (p = 1 × 10-7); inflammation, and IDO activity (p = 1 × 10-6). Heightened levels of PARP1, WARS and KYNU are predictive at the acute stage of infection for resilience, while in contrast, levels remained high and are predictive of persistent and more severe outcomes in COVID disease. Generation of a targeted marker profile showed these changes in immune disease underlay resolution of epithelial barrier function and have the potential to define disease trajectory and more severe patient outcomes.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Humans , Tryptophan/metabolism , Proteomics , Inflammatory Bowel Diseases/metabolism , Inflammation/genetics , Inflammation/metabolism , Transcriptome
10.
Front Pharmacol ; 13: 971369, 2022.
Article in English | MEDLINE | ID: covidwho-2089887

ABSTRACT

PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.753 ± 0.033, 0.910 ± 0.045, and 0.888 ± 0.016 for the test set. In addition, Y-scrambling testing successfully verified that the model was not results of chance correlation. More importantly, the interpretability of the multi-task FP-GNN model enabled the identification of key structural fragments associated with the inhibition of each PARP isoform. To facilitate the use of the multi-task FP-GNN model in the field, an online webserver called PARPi-Predict and its local version software were created to predict whether compounds bear potential inhibitory activity against PARPs, thereby contributing to design and discover better selective PARP inhibitors.

11.
Vaccines (Basel) ; 10(9)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2010346

ABSTRACT

The administration of a third dose of a vaccine against SARS-CoV-2 has increased protection against disease transmission and severity. However, the kinetics of neutralizing antibodies against the virus has been poorly studied in cancer patients under targeted therapies. Baseline characteristics and levels of neutralizing antibodies at specific timepoints after vaccination were compared between patients suffering from breast, ovarian or prostate cancer and healthy individuals. Breast cancer patients were treated with cyclin D kinase 4/6 inhibitors and hormonal therapy, ovarian cancer patients were treated with poly (ADP-ribose) polymerase inhibitors and prostate cancer patients were treated with an androgen receptor targeted agent. Levels of neutralizing antibodies were significantly lower in cancer patients compared to healthy individuals at all timepoints. Antibodies' titers declined over time in both groups but remained above protective levels (>50%) at 6 months after the administration of the second dose. The administration of a third dose increased neutralizing antibodies' levels in both groups. The titers of protective against SARS-CoV-2 antibodies wane over time and increase after a third dose in cancer patients under treatment.

12.
Cell Mol Life Sci ; 79(6): 313, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1857924

ABSTRACT

Gastroenteritis is inflammation of the lining of stomach and intestines and causes significant morbidity and mortality worldwide. Many viruses, especially RNA viruses are the most common cause of enteritis. Innate immunity is the first line of host defense against enteric RNA viruses and virus-induced intestinal inflammation. The first layer of defense against enteric RNA viruses in the intestinal tract is intestinal epithelial cells (IECs), dendritic cells and macrophages under the intestinal epithelium. These innate immune cells express pathogen-recognition receptors (PRRs) for recognizing enteric RNA viruses through sensing viral pathogen-associated molecular patterns (PAMPs). As a result of this recognition type I interferon (IFN), type III IFN and inflammasome activation occurs, which function cooperatively to clear infection and reduce viral-induced intestinal inflammation. In this review, we summarize recent findings about mechanisms involved in enteric RNA virus-induced intestinal inflammation. We will provide an overview of the enteric RNA viruses, their RNA sensing mechanisms by host PRRs, and signaling pathways triggered by host PRRs, which shape the intestinal immune response to maintain intestinal homeostasis.


Subject(s)
RNA Viruses , Humans , Immunity, Innate , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestines , Pathogen-Associated Molecular Pattern Molecules/metabolism
13.
Front Oncol ; 11: 785102, 2021.
Article in English | MEDLINE | ID: covidwho-1834497

ABSTRACT

BACKGROUND: The present COVID-19 pandemic has tended toward normality. To provide convenient, safe, and effective home treatment programs for patients with recurrent ovarian cancer (ROC), the clinical efficacy and safety of poly (ADP-ribose) polymerase inhibitor (PARPi) (including olaparib, niraparib, and rucaparib) monotherapy as a maintenance treatment for platinum-sensitive ROC were systematically evaluated. METHODS: Numerous electronic databases were systematically searched for randomized controlled trials (RCTs) of PARPi maintenance treatment for ROC that were published before June 2021. The primary endpoints were overall survival (OS) and progression-free survival (PFS), and the secondary endpoint was grade 3-4 adverse effects (AEs). After data extraction and the quality evaluation of the included studies, Bayesian network meta-analysis (NMA) was performed using R software. The ability of each treatment was ranked using the surface under the cumulative ranking (SUCRA) curve. RESULTS: The analysis included five studies and 1390 patients. The NMA results demonstrated that compared with the placebo, olaparib and niraparib exhibited significant benefits in the gBRCA-mutated population, and respectively reduced the risk of death by 31% (HR = 0.69, 95% CI: 0.53-0.90) and 34% (HR = 0.66, 95% CI: 0.44-0.99). Olaparib, niraparib, and rucaparib were all found to be very effective in prolonging PFS in patients with ROC. All three PARPi treatments increased the number of grade 3-4 AEs in patients with ROC as compared with the placebo. CONCLUSIONS: Overall, olaparib and niraparib maintenance treatment can significantly prolong the OS of patients with gBRCA mutations. Furthermore, the three investigated PARPi monotherapy maintenance treatments can prolong PFS regardless of BRCA mutation status. Although the incidence of AEs in the treatment groups was found to be significantly higher than that in the placebo group, the patients in the treatment group tolerated the treatment. Home oral PARPi treatment can balance tumor treatment and pandemic prevention and control, and is the most convenient, safe, and effective home treatment method available against the background of the current COVID-19 pandemic. SYSTEMATIC REVIEW REGISTRATION: https://inplasy.com/inplasy-2021-6-0033/.

14.
J Virol ; 96(7): e0151621, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1744134

ABSTRACT

ADP-ribosylation is a highly dynamic posttranslational modification frequently studied in stress response pathways with recent attention given to its role in response to viral infection. Notably, the alphaviruses encode catalytically active macrodomains capable of ADP-ribosylhydrolase (ARH) activities, implying a role in remodeling the cellular ADP-ribosylome. This report decouples mono- and poly-ARH contributions to macrodomain function using a newly engineered Sindbis virus (SINV) mutant with attenuated poly-ARH activity. Our findings indicate that viral poly-ARH activity is uniquely required for high titer replication in mammalian systems. Despite translating incoming genomic RNA as efficiently as WT virus, mutant viruses have a reduced capacity to establish productive infection, offering a more complete understanding of the kinetics and role of the alphavirus macrodomain with important implications for broader ADP-ribosyltransferase biology. IMPORTANCE Viral macrodomains have drawn attention in recent years due to their high degree of conservation in several virus families (e.g., coronaviruses and alphaviruses) and their potential druggability. These domains erase mono- or poly-ADP-ribose, posttranslational modifications written by host poly-ADP-ribose polymerase (PARP) proteins, from undetermined host or viral proteins to enhance replication. Prior work determined that efficient alphavirus replication requires catalytically active macrodomains; however, which form of the modification requires removal and from which protein(s) had not been determined. Here, we present evidence for the specific requirement of poly-ARH activity to ensure efficient productive infection and virus replication.


Subject(s)
Coronavirus , Hydrolases , RNA, Viral , Sindbis Virus , Animals , Coronavirus/genetics , Hydrolases/metabolism , Mammals/genetics , Poly Adenosine Diphosphate Ribose/metabolism , RNA, Viral/genetics , Sindbis Virus/enzymology , Sindbis Virus/genetics , Virus Replication
15.
J Infect Dev Ctries ; 16(1): 101-111, 2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1704553

ABSTRACT

INTRODUCTION: During the evolution of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, several drug candidates have been proposed for repositioning towards a quest for more effective treatments. METHODOLOGY: We reviewed recent literature (Pubmed, Google, Clinicaltrials.gov), as of the middle of May 2021, for evidence regarding the potential benefit from poly(ADP-ribose)-polymerase inhibitors and vascular endothelial growth factor blockade in severe SARS-CoV-2 infection. RESULTS: poly(ADP-ribose)-polymerase inhibitors have been suggested as potential agents against coronavirus disease 2019 (COVID-19) by a variety of mechanisms. vascular endothelial growth factor-associated vascular permeability is implicated with increased vascular leakage and pulmonary oedema. Thus, anti-angiogenesis factors, such as bevacizumab are being investigated in critically ill COVID-19 patients. CONCLUSIONS: The synergistic potential of these two classes of inhibitors in severe COVID-19 management could be beneficial. Further research should be carried out in order to support this hypothesis.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Poly(ADP-ribose) Polymerase Inhibitors , Vascular Endothelial Growth Factor A , COVID-19/epidemiology , Humans , Pandemics , Patient Acuity , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , SARS-CoV-2 , Vascular Endothelial Growth Factor A/pharmacology
16.
Biochem J ; 478(23): 4071-4092, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1556088

ABSTRACT

The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.


Subject(s)
Antiviral Agents/therapeutic use , Immunity, Innate , NAD/metabolism , Virus Diseases/drug therapy , ADP-ribosyl Cyclase 1/metabolism , Armadillo Domain Proteins/metabolism , COVID-19/immunology , Cytoskeletal Proteins/metabolism , Humans , NAD/immunology , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Domains , SARS-CoV-2 , Sirtuins/metabolism , Viral Nonstructural Proteins/metabolism , Virus Diseases/immunology , COVID-19 Drug Treatment
17.
Vaccines (Basel) ; 9(10)2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1463855

ABSTRACT

OBJECTIVE: Vaccination for SARS-CoV-2 provides significant protection against the infection in the general population. However, limited data exist for cancer patients under systemic therapy. METHODS: In this cohort, we prospectively enrolled cancer patients treated with PARPi as well as healthy volunteers in order to study the kinetics of anti-SARS-CoV-2 antibodies (NAbs) after COVID-19 vaccination. Baseline demographics, co-morbidities, and NAb levels were compared between the two groups. RESULTS: The results of the cohort of 36 patients receiving PARP inhibitors are presented here. Despite no new safety issues being noticed, their levels of SARS-CoV-2 neutralizing antibodies were significantly lower in comparison to matched healthy volunteers up to day 30 after the second dose. CONCLUSIONS: These results suggest that maintaining precautions against COVID-19 is essential for cancer patients and should be taken into consideration for the patients under treatment, while further exploration is needed to reduce the uncertainty of SARS-CoV-2 immunity among cancer patients under treatment.

18.
Noncoding RNA ; 7(4)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438679

ABSTRACT

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 (2019-nCoV) has devastated global healthcare and economies. Despite the stabilization of infectivity rates in some developed nations, several countries are still under the grip of the pathogenic viral mutants that are causing a significant increase in infections and hospitalization. Given this urgency, targeting of key host factors regulating SARS-CoV-2 life cycle is postulated as a novel strategy to counter the virus and its associated pathological outcomes. In this regard, Poly (ADP)-ribose polymerase-1 (PARP-1) is being increasingly recognized as a possible target. PARP-1 is well studied in human diseases such as cancer, central nervous system (CNS) disorders and pathology of RNA viruses. Emerging evidence indicates that regulation of PARP-1 by non-coding RNAs such as microRNAs is integral to cell survival, redox balance, DNA damage response, energy homeostasis, and several other cellular processes. In this short perspective, we summarize the recent findings on the microRNA/PARP-1 axis and its therapeutic potential for COVID-19 pathologies.

19.
J Biol Chem ; 297(3): 101041, 2021 09.
Article in English | MEDLINE | ID: covidwho-1397437

ABSTRACT

SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARS-CoV-2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFN-responsive genes. Our results suggest that PARP9/DTX3L-dependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARS-CoV-2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself.


Subject(s)
ADP-Ribosylation , COVID-19/virology , Interferons/metabolism , Neoplasm Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , SARS-CoV-2/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Humans
20.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1354986

ABSTRACT

Human ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway. TMPRSS2, including IFNß, STAT1, and STAT2, has the PARP1 binding site near to TSS either up or downstream promoter region. It is well documented that PARP1 regulates gene expression at the transcription level. Therefore, to curb virus infection, both promoting type I IFN signaling to boost innate immunity and prevention of virus entry by inhibiting PARP1, ACE2 or TMPRSS2 are safe options. Most importantly, our aim is to attract the attention of the global scientific community towards the codon 72 Single Nucleotide Polymorphism (SNP) of p53 and its underneath role in the innate immune response against SARS-CoV-2. Here, we discuss codon 72 SNP of human p53's role in the different innate immune response to restrict virus-mediated mortality rate only in specific parts of the world. In addition, we discuss potential targets and emerging therapies using bioengineered bacteriophage, anti-sense, or CRISPR strategies.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/immunology , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Binding Sites , COVID-19/virology , Humans , Immunity, Innate , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/immunology , Poly (ADP-Ribose) Polymerase-1/metabolism , Polymorphism, Single Nucleotide , SARS-CoV-2/physiology , Serine Endopeptidases/chemistry , Serine Endopeptidases/immunology , Vaccination , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL